History Of Computers

History of Computers
Only once in a lifetime will a new invention come about to touch every
aspect of our lives. Such a device that changes the way we work, live, and play
is a special one, indeed. A machine that has done all this and more now exists
in nearly every business in the US and one out of every two households (Hall,
156). This incredible invention is the computer. The electronic computer has
been around for over a half-century, but its ancestors have been around for 2000
years. However, only in the last 40 years has it changed the American society.

From the first wooden abacus to the latest high-speed microprocessor, the
computer has changed nearly every aspect of people’s lives for the better.

Essay due? We'll write it for you!strong>
For You For Only $13.90/page!


order now

The very earliest existence of the modern day computer’s ancestor is the
abacus. These date back to almost 2000 years ago. It is simply a wooden rack
holding parallel wires on which beads are strung. When these beads are moved
along the wire according to “programming” rules that the user must memorize, all
ordinary arithmetic operations can be performed (Soma, 14). The next innovation
in computers took place in 1694 when Blaise Pascal invented the first “digital
calculating machine”. It could only add numbers and they had to be entered by
turning dials. It was designed to help Pascal’s father who was a tax collector
(Soma, 32).

In the early 1800’s, a mathematics professor named Charles Babbage
designed an automatic calculation machine. It was steam powered and could store
up to 1000 50-digit numbers. Built in to his machine were operations that
included everything a modern general-purpose computer would need. It was
programmed by–and stored data on–cards with holes punched in them,
appropriately called “punchcards”. His inventions were failures for the most
part because of the lack of precision machining techniques used at the time and
the lack of demand for such a device (Soma, 46).

After Babbage, people began to lose interest in computers. However,
between 1850 and 1900 there were great advances in mathematics and physics that
began to rekindle the interest (Osborne, 45). Many of these new advances
involved complex calculations and formulas that were very time consuming for
human calculation. The first major use for a computer in the US was during the
1890 census. Two men, Herman Hollerith and James Powers, developed a new
punched-card system that could automatically read information on cards without
human intervention (Gulliver, 82). Since the population of the US was
increasing so fast, the computer was an essential tool in tabulating the totals.

These advantages were noted by commercial industries and soon led to the
development of improved punch-card business-machine systems by International
Business Machines (IBM), Remington-Rand, Burroughs, and other corporations. By
modern standards the punched-card machines were slow, typically processing from
50 to 250 cards per minute, with each card holding up to 80 digits. At the time,
however, punched cards were an enormous step forward; they provided a means of
input, output, and memory storage on a massive scale. For more than 50 years
following their first use, punched-card machines did the bulk of the world’s
business computing and a good portion of the computing work in science (Chposky,
73).

By the late 1930s punched-card machine techniques had become so well
established and reliable that Howard Hathaway Aiken, in collaboration with
engineers at IBM, undertook construction of a large automatic digital computer
based on standard IBM electromechanical parts. Aiken’s machine, called the
Harvard Mark I, handled 23-digit numbers and could perform all four arithmetic
operations. Also, it had special built-in programs to handle logarithms and
trigonometric functions. The Mark I was controlled from prepunched paper tape.

Output was by card punch and electric typewriter. It was slow, requiring 3 to 5
seconds for a multiplication, but it was fully automatic and could complete long
computations without human intervention (Chposky, 103).

The outbreak of World War II produced a desperate need for computing
capability, especially for the military. New weapons systems were produced
which needed trajectory tables and other essential data.

In 1942, John P. Eckert, John W. Mauchley, and their associates at the
University of Pennsylvania decided to build a high-speed electronic computer to
do the job. This machine became known as ENIAC, for “Electrical Numerical
Integrator And Calculator”. It could multiply two numbers at the rate of 300
products per second, by finding the value of each product from a multiplication
table stored in its memory. ENIAC was thus about 1,000 times faster than the
previous generation of computers (Dolotta, 47).

ENIAC used 18,000 standard vacuum tubes, occupied 1800 square feet of
floor space, and used about 180,000 watts of electricity. It used punched-card
input and output. The ENIAC was very difficult to program because one had to
essentially re-wire it to perform whatever task he wanted the computer to do.

It was, however, efficient in handling the particular programs for which it had
been designed. ENIAC is generally accepted as the first successful high-speed
electronic digital computer and was used in many applications from 1946 to 1955
(Dolotta, 50).

Mathematician John von Neumann was very interested in the ENIAC. In 1945
he undertook a theoretical study of computation that demonstrated that a
computer could have a very simple and yet be able to execute any kind of
computation effectively by means of proper programmed control without the need
for any changes in hardware. Von Neumann came up with incredible ideas for
methods of building and organizing practical, fast computers. These ideas,
which came to be referred to as the stored-program technique, became fundamental
for future generations of high-speed digital computers and were universally
adopted (Hall, 73).

The first wave of modern programmed electronic computers to take
advantage of these improvements appeared in 1947. This group included computers
using random access memory (RAM), which is a memory designed to give almost
constant access to any particular piece of information (Hall, 75). These
machines had punched-card or punched-tape input and output devices and RAMs of
1000-word capacity. Physically, they were much more compact than ENIAC: some
were about the size of a grand piano and required 2500 small electron tubes.

This was quite an improvement over the earlier machines. The first-generation
stored-program computers required considerable maintenance, usually attained 70%
to 80% reliable operation, and were used for 8 to 12 years. Typically, they
were programmed directly in machine language, although by the mid-1950s progress
had been made in several aspects of advanced programming. This group of
machines included EDVAC and UNIVAC, the first commercially available computers
(Hazewindus, 102).

The UNIVAC was developed by John W. Mauchley and John Eckert, Jr. in the
1950’s. Together they had formed the Mauchley-Eckert Computer Corporation,
America’s first computer company in the 1940’s. During the development of the
UNIVAC, they began to run short on funds and sold their company to the larger
Remington-Rand Corporation. Eventually they built a working UNIVAC computer.

It was delivered to the US Census Bureau in 1951 where it was used to help
tabulate the US population (Hazewindus, 124).

Early in the 1950s two important engineering discoveries changed the
electronic computer field. The first computers were made with vacuum tubes, but
by the late 1950’s computers were being made out of transistors, which were
smaller, less expensive, more reliable, and more efficient (Shallis, 40). In
1959, Robert Noyce, a physicist at the Fairchild Semiconductor Corporation,
invented the integrated circuit, a tiny chip of silicon that contained an entire
electronic circuit. Gone was the bulky, unreliable, but fast machine; now
computers began to become more compact, more reliable and have more capacity
(Shallis, 49).

These new technical discoveries rapidly found their way into new models
of digital computers. Memory storage capacities increased 800% in commercially
available machines by the early 1960s and speeds increased by an equally large
margin. These machines were very expensive to purchase or to rent and were
especially expensive to operate because of the cost of hiring programmers to
perform the complex operations the computers ran. Such computers were typically
found in large computer centers–operated by industry, government, and private
laboratories–staffed with many programmers and support personnel (Rogers, 77).

By 1956, 76 of IBM’s large computer mainframes were in use, compared with only
46 UNIVAC’s (Chposky, 125).

In the 1960s efforts to design and develop the fastest possible
computers with the greatest capacity reached a turning point with the completion
of the LARC machine for Livermore Radiation Laboratories by the Sperry-Rand
Corporation, and the Stretch computer by IBM. The LARC had a core memory of
98,000 words and multiplied in 10 microseconds. Stretch was provided with
several ranks of memory having slower access for the ranks of greater capacity,
the fastest access time being less than 1 microseconds and the total capacity in
the vicinity of 100 million words (Chposky, 147).

During this time the major computer manufacturers began to offer a range
of computer capabilities, as well as various computer-related equipment. These
included input means such as consoles and card feeders; output means such as
page printers, cathode-ray-tube displays, and graphing devices; and optional
magnetic-tape and magnetic-disk file storage. These found wide use in business
for such applications as accounting, payroll, inventory control, ordering
supplies, and billing. Central processing units (CPUs) for such purposes did
not need to be very fast arithmetically and were primarily used to access large
amounts of records on file. The greatest number of computer systems were
delivered for the larger applications, such as in hospitals for keeping track of
patient records, medications, and treatments given. They were also used in
automated library systems and in database systems such as the Chemical Abstracts
system, where computer records now on file cover nearly all known chemical
compounds (Rogers, 98).

The trend during the 1970s was, to some extent, away from extremely
powerful, centralized computational centers and toward a broader range of
applications for less-costly computer systems. Most continuous-process
manufacturing, such as petroleum refining and electrical-power distribution
systems, began using computers of relatively modest capability for controlling
and regulating their activities. In the 1960s the programming of applications
problems was an obstacle to the self-sufficiency of moderate-sized on-site
computer installations, but great advances in applications programming languages
removed these obstacles. Applications languages became available for
controlling a great range of manufacturing processes, for computer operation of
machine tools, and for many other tasks (Osborne, 146). In 1971 Marcian E. Hoff,
Jr., an engineer at the Intel Corporation, invented the microprocessor and
another stage in the development of the computer began (Shallis, 121).

A new revolution in computer hardware was now well under way, involving
miniaturization of computer-logic circuitry and of component manufacture by what
are called large-scale integration techniques. In the 1950s it was realized
that “scaling down” the size of electronic digital computer circuits and parts
would increase speed and efficiency and improve performance. However, at that
time the manufacturing methods were not good enough to accomplish such a task.

About 1960 photo printing of conductive circuit boards to eliminate wiring
became highly developed. Then it became possible to build resistors and
capacitors into the circuitry by photographic means (Rogers, 142). In the 1970s
entire assemblies, such as adders, shifting registers, and counters, became
available on tiny chips of silicon. In the 1980s very large scale integration
(VLSI), in which hundreds of thousands of transistors are placed on a single
chip, became increasingly common. Many companies, some new to the computer
field, introduced in the 1970s programmable minicomputers supplied with software
packages. The size-reduction trend continued with the introduction of personal
computers, which are programmable machines small enough and inexpensive enough
to be purchased and used by individuals (Rogers, 153).

One of the first of such machines was introduced in January 1975.

Popular Electronics magazine provided plans that would allow any electronics
wizard to build his own small, programmable computer for about $380 (Rose, 32).

The computer was called the “Altair 8800O. Its programming involved pushing
buttons and flipping switches on the front of the box. It didn’t include a
monitor or keyboard, and its applications were very limited (Jacobs, 53). Even
though, many orders came in for it and several famous owners of computer and
software manufacturing companies got their start in computing through the Altair.

For example, Steve Jobs and Steve Wozniak, founders of Apple Computer, built a
much cheaper, yet more productive version of the Altair and turned their hobby
into a business (Fluegelman, 16).

After the introduction of the Altair 8800, the personal computer
industry became a fierce battleground of competition. IBM had been the computer
industry standard for well over a half-century. They held their position as the
standard when they introduced their first personal computer, the IBM Model 60 in
1975 (Chposky, 156). However, the newly formed Apple Computer company was
releasing its own personal computer, the Apple II (The Apple I was the first
computer designed by Jobs and Wozniak in Wozniak’s garage, which was not
produced on a wide scale). Software was needed to run the computers as well.

Microsoft developed a Disk Operating System (MS-DOS) for the IBM computer while
Apple developed its own software system (Rose, 37). Because Microsoft had now
set the software standard for IBMs, every software manufacturer had to make
their software compatible with Microsoft’s. This would lead to huge profits for
Microsoft (Cringley, 163).

The main goal of the computer manufacturers was to make the computer as
affordable as possible while increasing speed, reliability, and capacity.

Nearly every computer manufacturer accomplished this and computers popped up
everywhere. Computers were in businesses keeping track of inventories.

Computers were in colleges aiding students in research. Computers were in
laboratories making complex calculations at high speeds for scientists and
physicists. The computer had made its mark everywhere in society and built up a
huge industry (Cringley, 174). The future is promising for the computer
industry and its technology. The speed of processors is expected to double
every year and a half in the coming years. As manufacturing techniques are
further perfected the prices of computer systems are expected to steadily fall.

However, since the microprocessor technology will be increasing, it’s higher
costs will offset the drop in price of older processors. In other words, the
price of a new computer will stay about the same from year to year, but
technology will steadily increase (Zachary, 42)
Since the end of World War II, the computer industry has grown from a
standing start into one of the biggest and most profitable industries in the
United States. It now comprises thousands of companies, making everything from
multi-million dollar high-speed super computers to printout paper and floppy
disks. It employs millions of people and generates tens of billions of dollars
in sales each year (Malone, 192). Surely, the computer has impacted every
aspect of people’s lives. It has affected the way people work and play. It has
made everyone’s life easier by doing difficult work for people. The computer
truly is one of the most incredible inventions in history.


Works Cited
Chposky, James. Blue Magic. New York: Facts on File Publishing. 1988.


Cringley, Robert X. Accidental Empires. Reading, MA: Addison Wesley Publishing,
1992.


Dolotta, T.A. Data Processing: 1940-1985. New York: John Wiley & Sons, 1985.


Fluegelman, Andrew. “A New World”, MacWorld. San Jose, Ca: MacWorld Publishing,
February, 1984 (Premire Issue).


Hall, Peter. Silicon Landscapes. Boston: Allen & Irwin, 1985
Gulliver, David. Silicon Valey and Beyond. Berkeley, Ca: Berkeley Area
Government Press, 1981.


Hazewindus, Nico. The U.S. Microelectronics Industry. New York: Pergamon Press,
1988.


Jacobs, Christopher W. “The Altair 8800O, Popular Electronics. New York:
Popular Electronics Publishing, January 1975.


Malone, Michael S. The Big Scare: The U.S. Computer Industry. Garden City, NY:
Doubleday & Co., 1985.


Osborne, Adam. Hypergrowth. Berkeley, Ca: Idthekkethan Publishing Company,
1984.


Rogers, Everett M. Silicon Valey Fever. New York: Basic Books, Inc. Publishing,
1984.


Rose, Frank. West of Eden. New York: Viking Publishing, 1989.


Shallis, Michael. The Silicon Idol. New York: Shocken Books, 1984.


Soma, John T. The History of the Computer. Toronto: Lexington Books, 1976.


Zachary, William. “The Future of computing”, Byte. Boston: Byte Publishing,
August 1994.


e